skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM ET on Friday, February 6 until 10:00 AM ET on Saturday, February 7 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Fan, Lei"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Visual localization, the task of determining the position and orientation of a camera, typically involves three core components: offline construction of a keyframe database, efficient online keyframes retrieval, and robust local feature matching. However, significant challenges arise when there are large viewpoint disparities between the query view and the database, such as attempting localization in a corridor previously build from an opposing direction. Intuitively, this issue can be addressed by synthesizing a set of virtual keyframes that cover all viewpoints. However, existing methods for synthesizing novel views to assist localization often fail to ensure geometric accuracy under large viewpoint changes. In this paper, we introduce a confidence-aware geometric prior into 2D Gaussian splatting to ensure the geometric accuracy of the scene. Then we can render novel views through the mesh with clear structures and accurate geometry, even under significant viewpoint changes, enabling the synthesis of a comprehensive set of virtual keyframes. Incorporating this geometry-preserving virtual keyframe database into the localization pipeline significantly enhances the robustness of visual localization. 
    more » « less
  2. We develop an open-source, end-to-end software (named QHDOPT), which can solve nonlinear optimization problems using the quantum Hamiltonian descent (QHD) algorithm. QHDOPT offers an accessible interface and automatically maps tasks to various supported quantum backends (i.e., quantum hardware machines). These features enable users, even those without prior knowledge or experience in quantum computing, to utilize the power of existing quantum devices for nonlinear and nonconvex optimization tasks. In its intermediate compilation layer, QHDOPT employs SimuQ, an efficient interface for Hamiltonian-oriented programming, to facilitate multiple algorithmic specifications and ensure compatible cross-hardware deployment. 
    more » « less